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ABSTRACT

Application of the Virtual Northern method to human mRNA
allows us to systematically measure transcript length on a

genome-wide scale [1]. Characterization of RNA transcripts

by lenath provides a measurement which complements CDNK/hich can be cast as a standard linear program, and solved
ylengih p P using interior point methods [5]. When the solution is suffi-

sequencing. We have robustly extracted the lengths of th
transcripts expressed by each gene for comparison with tkl
Unigene, Refseq, and H-Invitational databases [2, 3].
Obtaining an accurate probability for each peak require
performing multiple bootstrap simulations, each involving a
deconvolution operation which is equivalent to finding the (P.)
sparsest non-negative solution of an underdetermined system Le
of equations. This process is computationally intensive for a
large number of simulations and genes. In this contributiord.2. Baseline deconvolution

we present an efficient approximation method which is faste

than general purpose solvers by two orders of magnitude, ar(a our settingA denotes a convolution operqt@rlhe obser-
ation, andr the underlying set of non-negative peaks. Solv-

in practice reduces our processing time from a week to hour%i.]g (P\..) in this case amounts th norm deconvolution in
the presence of noise. While such a model accounts for spu-

1. INTRODUCTION rious peaks within noisy data, it is not sufficiently suitable

. . . for our purposes. Roughly speaking, we would also like to

In previous work we presented a baseline deconvolution mOdgcicommodate signals with low frequency content which the

for rob_u s_tly extracting Ien_gths of RNA transcripts [_1]' Our yeconvolution model represents as multiple peaks. We there-

(Pr) min ||z||; subjecttoy = Az, z > 0,

iently sparse there exists equivalence betw@gnand(P;)
8, 7]. In most practical applications, we observe noisy data
£8] and would like to solve the problem:

min ||z||; subject to]|y — Az|| < e

from noisy microarray data. In this setting the peaks form 3 bservation is represented as a smooth baselinith peaks
sparse non-negative representation. We briefly describe trb(?] topw and solve the optimization problem:
convolutional model used for recovering peaksdynorm

minimization - for a more comprehensive and detailed de-

o _ i min ||z||1 + + \||7||2 subjecttou +v+r =y,
scription of our analysis the reader is referred to [1, 4]. lelh + Bl Il : Y

such thatdz = v andA?u = 3, whereA? denotes the sec-
1.1. /; norm minimization ond difference operator. This means that we solve for the
OF_nderlying peaks which when convolved with the kernel and

In an abstract fashion, our problem can be formulated as f'neaéided t0 2 smooth baseline result in the observed data.

ing the sparsest non-negative solution to an underdetermin
system of equations, which is the solution with the small-
est number of nonzero elements. We would therefore like t4.3. Parametric bootstrap

solve the optimization problem: . ' .
In order to ascertain a confidence for each peak, we assign a

probability to each range of mMRNA lengths for every gene.

(Py) min |||y subject toy = Az, z > 0. This value describes the likelihood that what we have uncov-
ered is a true peak. Each value of the signal is sampled with

However, it is well-known that this non-convex combi- Poisson noise to create multiple parametric bootstrap repli-
natorial optimization problem i&V P-hard and therefore we cates. Given the baseline deconvolution result according to
consider the convex optimization problem: our model, we simulate the experiment by convolution and



a Poisson model. More specifically, for each gene we con-
sider each peak independently and perform multiple simula-
tions of the typey; = A x & + z;, wherez; is Poisson and

Z each peak in the baseline deconvolution result. Next, we
reconstruct each simulation by deconvolution to obtain mul-
tiple bootstrap measurements Generating multiple recon-
structed replicates, . . ., &, requires solving many instances
of the problem(P; ) which is computationally intensive, in
particular for a large number of simulations £ 100) and
genes (22,385). We therefore apply a rapid method for find-
ing a sparse solution of underdetermined linear systems of
equations as described next.

2. ITERATIVE SOFT THRESHOLDING

A fast solution to the optimization proble(#, . ) is obtained
by a simplelterative Soft Thresholdinglgorithm. Letd;(x)
denote the soft thresholding operator:

(6¢(x))i = sign(z;)(||z:l| — )+
Consider the iteration
o =gt + pdy, (AT (y — Aa')), 1)

wherez! is thel-th approximate solutiord, is soft threshold-

Input: n x p matrix A, n < p, and observation vectar.
Output: solution of (P ).
Algorithm:

Init:

iteration! = 0.

solutionz! = 0.
residualr! = y.
correlationd! = A'r'.
thresholdt; = max(||c'||).

Step:

while ||r!||2 > ¢
iterationl =1 + 1.
solutionz! = ' ~' + pé;, _, (1),
residualr! = y — Az'.
correlationc! = A'rl.
thresholdt; = pt;—1.

end while

Fig. 1. Iterative Soft Thresholding pseudocode.

among others, includes this application and solvers. In the

ing at amplitude and the threshol¢} decreases with increas- spirit of reproducible researchwe are making the software
ing iteration count. Her@ < p < 1, we start this iteration gy ailable to the research community at:

from 2 = 0, andt; decreases from iteration to iteration by http:/Avww-stat.stanford.edisparselab/.

a factory = 1 — p. Each iteration requires applications of
A and AT, Figure 1 provides a detailed description of the
algorithm in pseudocode. [
A variation which accelerates the basic iteration in Eq. 1
is a solution in which the matrid is partitioned into blocks
A = [By, Bz ... B;] by taking random disjoint columns. Thenl
the least-squares projection Bf is applied in computing the
correlations:

1]

[3]
w419 = 3+ ps, (BT Bj) ' BI (y - Ax')),

Iterative soft thresholding naturally extends to a paraIIeI[4]
solution of multiple problems of the same form by replacing
the observation and solution vectors with matrices and solv®
ing:

X = X' 4 po,, (AT(Y — AXY).

Using iterative soft thresholding, computation time of the
bootstrap is reduced from being quadratic in the input to lin{7]
ear with a small constant, and in practice by two orders of
magnitude. For example, for our purposes the bootstrap com-
putation for a single gene using a general purpose solver [g]
performed in 18 seconds on a 1.5GHz machine whereas us-
ing iterative soft thresholding the computation is performed in
30 milliseconds. Processing time of the entire set of genes 9]
reduced from a week to hours. For more details, we provide
SparseLab [9] - a collection of Matlab functions which,

(6]

] Michael A. Saunders and Byunggyoo Kim,
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