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ABSTRACT

Application of the Virtual Northern method to human mRNA
allows us to systematically measure transcript length on a
genome-wide scale [1]. Characterization of RNA transcripts
by length provides a measurement which complements cDNA
sequencing. We have robustly extracted the lengths of the
transcripts expressed by each gene for comparison with the
Unigene, Refseq, and H-Invitational databases [2, 3].

Obtaining an accurate probability for each peak requires
performing multiple bootstrap simulations, each involving a
deconvolution operation which is equivalent to finding the
sparsest non-negative solution of an underdetermined system
of equations. This process is computationally intensive for a
large number of simulations and genes. In this contribution
we present an efficient approximation method which is faster
than general purpose solvers by two orders of magnitude, and
in practice reduces our processing time from a week to hours.

1. INTRODUCTION

In previous work we presented a baseline deconvolution model
for robustly extracting lengths of RNA transcripts [1]. Our
analysis includes recovering a small set of underlying peaks
from noisy microarray data. In this setting the peaks form a
sparse non-negative representation. We briefly describe the
convolutional model used for recovering peaks by`1 norm
minimization - for a more comprehensive and detailed de-
scription of our analysis the reader is referred to [1, 4].

1.1. `1 norm minimization

In an abstract fashion, our problem can be formulated as find-
ing the sparsest non-negative solution to an underdetermined
system of equations, which is the solution with the small-
est number of nonzero elements. We would therefore like to
solve the optimization problem:

(P0) min ‖x‖0 subject toy = Ax, x ≥ 0.

However, it is well-known that this non-convex combi-
natorial optimization problem isNP -hard and therefore we
consider the convex optimization problem:

(P1) min ‖x‖1 subject toy = Ax, x ≥ 0,

which can be cast as a standard linear program, and solved
using interior point methods [5]. When the solution is suffi-
ciently sparse there exists equivalence between(P0) and(P1)
[6, 7]. In most practical applications, we observe noisy data
[8] and would like to solve the problem:

(P1,ε) min ‖x‖1 subject to‖y −Ax‖ ≤ ε

1.2. Baseline deconvolution

In our settingA denotes a convolution operator,y the obser-
vation, andx the underlying set of non-negative peaks. Solv-
ing (P1,ε) in this case amounts tol1 norm deconvolution in
the presence of noise. While such a model accounts for spu-
rious peaks within noisy data, it is not sufficiently suitable
for our purposes. Roughly speaking, we would also like to
accommodate signals with low frequency content which the
deconvolution model represents as multiple peaks. We there-
fore incorporate a rolling baseline into the model such that the
observation is represented as a smooth baselineu with peaks
on topv and solve the optimization problem:

min ‖x‖1 + µ‖β‖1 + λ‖r‖22 subject tou + v + r = y,

such thatAx = v and∆2u = β, where∆2 denotes the sec-
ond difference operator. This means that we solve for the
underlying peaks which when convolved with the kernel and
added to a smooth baseline result in the observed data.

1.3. Parametric bootstrap

In order to ascertain a confidence for each peak, we assign a
probability to each range of mRNA lengths for every gene.
This value describes the likelihood that what we have uncov-
ered is a true peak. Each value of the signal is sampled with
Poisson noise to create multiple parametric bootstrap repli-
cates. Given the baseline deconvolution result according to
our model, we simulate the experiment by convolution and



a Poisson model. More specifically, for each gene we con-
sider each peak independently and perform multiple simula-
tions of the typẽyi = A ∗ x̃ + zi, wherezi is Poisson and
x̃ each peak in the baseline deconvolution result. Next, we
reconstruct each simulation by deconvolution to obtain mul-
tiple bootstrap measurementsx̂i. Generating multiple recon-
structed replicateŝx1, . . . , x̂s requires solving many instances
of the problem(P1,ε) which is computationally intensive, in
particular for a large number of simulations (s = 100) and
genes (22,385). We therefore apply a rapid method for find-
ing a sparse solution of underdetermined linear systems of
equations as described next.

2. ITERATIVE SOFT THRESHOLDING

A fast solution to the optimization problem(P1,ε) is obtained
by a simpleIterative Soft Thresholdingalgorithm. Letδt(x)
denote the soft thresholding operator:

(δt(x))i = sign(xi)(‖xi‖ − t)+.

Consider the iteration

x`+1 = x` + ρδt`
(AT (y −Ax`)), (1)

wherexl is thel-th approximate solution,δt is soft threshold-
ing at amplitudet and the thresholdtl decreases with increas-
ing iteration count. Here0 < ρ ≤ 1, we start this iteration
from x0 = 0, andtl decreases from iteration to iteration by
a factorµ = 1 − ρ. Each iteration requires applications of
A andAT . Figure 1 provides a detailed description of the
algorithm in pseudocode.

A variation which accelerates the basic iteration in Eq. 1
is a solution in which the matrixA is partitioned into blocks
A = [B1, B2 . . . BJ ] by taking random disjoint columns. Then
the least-squares projection ofBj is applied in computing the
correlations:

xl+1,j = xl,j + ρδtl
((BT

j Bj)−1BT
j (y −Axl)).

Iterative soft thresholding naturally extends to a parallel
solution of multiple problems of the same form by replacing
the observation and solution vectors with matrices and solv-
ing:

X l+1 = X l + ρδtl
(AT (Y −AX l)).

Using iterative soft thresholding, computation time of the
bootstrap is reduced from being quadratic in the input to lin-
ear with a small constant, and in practice by two orders of
magnitude. For example, for our purposes the bootstrap com-
putation for a single gene using a general purpose solver is
performed in 18 seconds on a 1.5GHz machine whereas us-
ing iterative soft thresholding the computation is performed in
30 milliseconds. Processing time of the entire set of genes is
reduced from a week to hours. For more details, we provide
SparseLab [9] - a collection of Matlab functions which,

Input: n× p matrixA, n < p, and observation vectory.

Output: solution of(P1,ε).

Algorithm:

Init:
iterationl = 0.
solutionxl = 0.
residualrl = y.
correlationcl = A′rl.
thresholdtl = max(‖cl‖).

Step:
while ‖rl‖2 ≥ ε

iterationl = l + 1.
solutionxl = xl−1 + ρδtl−1(c

l−1).
residualrl = y −Axl.
correlationcl = A′rl.
thresholdtl = µtl−1.

end while

Fig. 1. Iterative Soft Thresholding pseudocode.

among others, includes this application and solvers. In the
spirit of reproducible research, we are making the software
available to the research community at:
http://www-stat.stanford.edu/s̃parselab/.
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