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ABSTRACT
We introduce a structured and portable Abstraction for Im-
proving Machine learning (AIM) to improve prediction out-
comes and enable meaningful comparisons of ML pipelines.
We implement AIM for a well-known acute leukemia classi-
fication problem using the Scientific Filesystem, enabling di-
rect performance comparisons across a variety of classifiers.
AIM provides three direct efficiency benefits: 1) the sources
of performance differences between ML pipelines can iden-
tified at the algorithm implementation level as defined by the
AIM, 2) improvements can be made to specific aspects of the
pipeline and thus better understood, and 3) the reuse of these
defined abstraction components across different pipelines is
facilitated. When the AIM is defined at the outset of the pre-
diction challenge, these benefits can come at minimal cost.
We show these benefits by implementing AIM and the Scien-
tific Filesystem on the well-known Golub AML/ALL cancer
dataset.

Index Terms— reproducible research, programming ab-
straction, machine learning, Scientific Filesystem, containers,
cyberinfrastructure.

1. INTRODUCTION

Machine Learning has become an indispensable tool for sci-
entific advancement in a broad and increasing number of
fields. This has brought a relatively new leaderboard style
problem solving structure where a common dataset is ana-
lyzed by community members with the “winner” obtaining
the lowest error rates on test data [1, 2, 3]. This approach
raises an important question: Why does one learning ap-
proach perform better than another? In this paper provide a
new way of assessing performance by proposing an Abstrac-
tion for Machine learning (AIM) that presents a structured
delivery of the ML pipeline in leaderboard style competi-
tions. AIM enables the direct evaluation and re-use of defined
steps. We first motivate the need for AIM by examining a fa-
mous leukemia classification problem, then we implement
structural innovations for prediction challenges via the AIM
framework for this example that show the benefit of AIM.

We utilize the Scientific Filesystem (SCIF) to create a Linux
container that is structured according to the AIM, before any
machine learning is attempted, that supports execution of
components of the AIM.

2. BACKGROUND: THE LEADERBOARD
APPROACH

The leaderboard approach has driven progress in natural lan-
guage processing and biometrics research for the past two
decades, and underlies the success of widely used speech
recognition applications such as Apple’s Siri and Amazon’s
Echo. In its most fundamental form the Machine Learning
leaderboard approach possesses four features: a well-posed
research question; a common dataset (with a holdout set
not seen by researchers); the application of ML to build a
predictive model; and a third party platform that tests the
trained models on the holdout data and reports predictive
accuracy. Some examples of platforms are Kaggle.com,
DrivenData.org, OpenML.org, and CodaLab Competitions
(https://competitions.codalab.org), and the Netflix [4] and
the protein structure prediction [5] challenges. This setting
makes clear that the variability of ML approaches and scien-
tific outcomes can be very high. In one challenge, effect sizes
varied from 0.89 to 2.93 in odds ratio units with 72% of the
analyses using unique combinations of features [6]. As we
will see in the next section, reconciling why one algorithm
outperforms another requires the ability to compare algorithm
implementations across the ML pipeline. The example we
present in this article shows this to be a difficult but important
task, improved by modularization and structure.

3. MOTIVATING AIM: CLASSIFYING CANCER

We are motivated by the the following query: List all
of the classifiers applied to the famous leukemia dataset
(AML/ALL), along with their error rates [7]. The goal is to
evaluate classifier performance. We chose this query since
this dataset is well-known and well-analyzed using many
classifiers, and provides a pipeline that can be modularized



into two components, providing a straightforward example of
the Abstraction for Machine learning (AIM). This example
also illustrates the need for AIM: without a modular struc-
ture for the computational pipeline, we show it is impossible
to compare the performance of the classifiers used on this
dataset.

In this problem gene expression data is used to discrim-
inate between two cancers, acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL). This dataset has
72 observations (25 AML and 47 ALL tumors) comprising
7192 genes. This is a challenging high-dimensional super-
vised learning problem with a small number of observations
relative to a much greater number of variables, in addition to
classical measurement error and biological noise. However,
most genetic features will not be related to the cancer type
which reduces the dimensionality of the problem [8]. We set
the notation as follows. Let X = (xij) be the the dataset
of genetic predictor variables, where xij is the expression of
gene j in sample i. xi = (xi1, . . . , xip) is the gene expres-
sion profile for sample i. yi is the response or class label,
for 2 classes. Let X be the space of all gene expression pro-
files. Let L = {(x1, y1), . . . , (xnL , ynL)} be the learning set,
T = {(xnL+1

), . . . , (xn)} be the test set, and C = C(x,L) be
our classifier. Our classification problem can be stated as fol-
lows: Given a learning set L = {(x1, y1), . . . , (xnL , ynL)}
where the xi’s are independent p-dimensional gene expres-
sion samples and the yi’s the class labels; and given a test
set T = {(xnL+1

), . . . , (xn)}, find a classification function
C = C(·,L) that maximizes classification accuracy on T .

This first step is answering the query is to discover which
classifiers have been applied to the AML/ALL dataset. A
literature search produced 30 publications that did so. We
found that a direct comparison of reported classifier perfor-
mance was impossible: different preprocessing and feature
selection steps were taken in each of the papers, meaning the
baselines for classifier comparison changed from paper to pa-
per. We chose five articles we deemed computationally re-
producible (these are papers 1 [9], 3 [10], 6 [11], 9 [12], and
29 [13]). We note that these are excellent articles and we
make no criticism of of the work in isolation. (See https:
//github.com/AIM-Project/AIM-Manusc
ript for a summary of all classifiers used in the 30 publi-
cations and flow charts of the computational pipelines for the
five articles we replicated).

The impossibility of direct classifier comparisons for this
datasets highlights shortcomings in the structure of publica-
tions. Some work is emerging to establish ML pipelines for
some codes, for example scikit-learn pipelines and Tensor-
Flow’s visualization module, and in this article we present a
general concept of abstraction in the ML context and demon-
strate its utility in permitting comparisons and improved pre-
diction outcomes regardless of the software or computer sys-
tem used.

In the cancer classification example we held the prepro-

Preprocessing / Feature Selection
Paper/Classifier 1 3 6a 6b 9 29 Ave
1WeightedVote .91 .94 .97 .97 .89 .74 .90
3NN .97 .94 .91 .94 .97 .97 .95
3SVM Linear .97 .97 .94 .97 .97 .77 .93
3SVM Quad .97 .88 .97 .97 .97 .91 .95
3Adaboost .91 .91 .97 .97 .91 .91 .93
6Logit .97 .97 .97 .97 .97 .88 .96
6QDA .94 .91 .94 .97 .97 .85 .93
9NN .97 .91 .85 .97 .94 .94 .93
9Decision Tree .91 .91 .97 .97 .91 .77 .90
9Bagging .94 .91 .97 .97 .92 .77 .91
9Bagging (CPD) .74 .85 .82 .91 .77 .68 .79
9FLDA .88 .88 .97 .97 .88 .88 .91
9DLDA .97 .94 .97 .97 .97 .88 .95
9DQDA .97 .94 .97 .97 .97 .88 .95
29BayesNetwork .74 .88 .97 .97 .83 .62 .83
Average .92 .92 .95 .97 .92 .83

Table 1. Classification accuracy for the AML/ALL dataset,
when preprocessing and feature selection steps are held con-
stant for each classifier, allowing for the direct comparison of
the classifiers presented in the five publications studied.

cessing and feature selection pipeline component (PPFS) con-
stant then trained each classifier on each PPFS component in
turn. This created a meta-analysis validation table [14] pre-
sented in Table 1. The columns give the preprocessing and
feature selection pipeline used (the 6th paper uses two sepa-
rate feature selection methods), and the rows indicate the clas-
sifier applied. Table 1 shows that feature selection is a key
driver of performance in this high-dimensional data setting
while no one classifier emerges as uniformly superior. The
best average performance of a classifier across PPFS methods
in this sample of five articles is logistic discrimination in [11]
at 96% (note that four other methods score 95% classification
accuracy). The highest average accuracy score for prepro-
cessing / feature selection across classification algorithms is
also from [11], using Partial Least Squares for dimensionality
reduction with 97%. These insights are not readily apparent
until the models are compared as in Table 1. Our classifica-
tion problem can now be revised: Find a classification func-
tion C = C(·, L̃) that maximizes classification accuracy on T̃ ,
where F(Z) = Z̃ is a function that carries out preprocessing
and feature selection steps on input data Z.

4. AIM: A GENERAL ABSTRACTION LAYER FOR
THE LEADERBOARD APPROACH

The notion of an abstraction representing a more complex un-
derlying reality is a fundamental concept in computer science
[15, 16, 17]. In this work we apply the concept of an abstrac-
tion explicitly to machine learning code, to separate parts of



the computational pipeline that are distinct steps for a particu-
lar prediction problem. For example, a raw dataset may have
had some feature selection techniques as we saw, such as prin-
ciple components analysis (PCA) or multidimensional scaling
(MDS), applied prior to the training of a machine learning al-
gorithm. Ensemble methods may be applied to combine var-
ious machine learning techniques, for example. We propose
that such steps are defined prior to an ML leaderboard compe-
tition to aid in the reconciliation of prediction differences by
different computational pipelines and to enable the efficient
re-use of specific modules, such as feature selection.

Building on work defining Experiment Definition Sys-
tems [18, 19, 20, 21], we propose the use of a formal abstrac-
tion layer, called AIM (Abstraction for Improving Machine
learning), that pre-specifies the modular steps in the ML
pipeline. Experiment Definitions Systems propose that the
computational environment with which the user interacts is
tailored for scientific applications.

In the ALL/AML example the abstraction layer specifies
data preprocessing and feature selection, and classifier model
building. A key point is that each component of the AIM
layer is implemented as standalone code (for example a stan-
dalone function or Jupyter Notebook) taking outputs from
other components as inputs like a highly specialized set of
functions. This allows three direct benefits for ML leader-
board challenges: 1) the sources of differences between ML
pipelines can be traced at the implementation level, 2) im-
provements can be made to specific aspects of the workflow,
for example feature selection or ML algorithm, 3) the reuse
of components across pipelines is facilitated. This structured
abstraction layer also permits a localized investigation into
sources of bias and uncertainty in prediction and can pro-
vide checks on whether model implementation is correct, for
example whether pre-validation was appropriately used [22].
The routine use of the AIM in ML leaderboard competitions
would permit a greater understanding of the underlying scien-
tific phenomena and the behavior of ML algorithms, as sug-
gested by the AML/ALL example. We found generating Ta-
ble 1 to be time consuming for these five articles (using more
than 200 student hours) and impossible for the other 25 ar-
ticles due to missing implementation details. In ML leader-
board challenges, the implementation is made available to the
hosting platform by design, giving a unique opportunity to
automate the controlled comparison as in Table 1 through the
use of a well-defined abstraction layer.

5. DEFINING THE AIM FOR THE AML/ALL
CANCER DATASET

We have created an example AIM for Paper1 [9] with a com-
ponent for the preprocessing and feature selection steps, and
a component for the classifier building steps (F1 and F2).
We created a Jupyter notebook for each, available at https:
//github.com/AIM-Project/AIM-Manuscript.

Fig. 1. A cartoon AIM layer showing a segmentation of ML
pipeline into discrete components F1, . . . ,Fn that carry out
n data steps to be input into a prediction model P . Steps may
include searches over parameter spaces, for example. The
AIM layer can be adapted to various ML pipelines facilitating
comparisons and re-use of components.

Fig. 2. We show a graphical representation of the simple AIM
we defined for the Golub cancer papers we reproduced in
this article. It shows the segmentation of the workflow into
two discrete components: Preprocessing/Feature Extraction
(PPFS) and Classifier (P), matching the layout in Table 1.

We can now describe a general AIM layer in the leader-
board setting. We now define our ML challenge as follows:
Find the function P = P(·, L̃) that maximizes prediction ac-
curacy on test data T̃ where Z̃ is the output of a sequence of
functions F1, . . . ,Fn that carry out n steps on input data Z.
By design, the Fi are modular, in that a change to Fi will not
change Fj ,∀j 6= i. This independence underpins the value of
the AIM layer: prediction accuracy will be maximized if each
component Fi in the abstraction layer is optimized for a par-
ticular (X,P) pair. The AIM layer provides a structured way
to track and isolate errors and evaluate hardware utilization,
local algorithm performance (e.g. for an AIM component Fi

or P), and resource use. It also permits users to visualize
defined steps or components in the ML pipeline, from prepro-
cessing to prediction.

6. IMPLEMENTING AIM USING THE SCIENTIFIC
FILESYSTEM

As an abstraction, the AIM layer itself is defined indepen-
dently of a particular computational implementation or sys-
tem. This is what enables AIM to facilitate the compari-
son of pipeline components (the the entire pipeline) that have
been implemented in different ways or on different systems.
As Linux containers such as Singularity and Docker [23, 24]



have become more popular, a natural step is to embody the
AIM abstraction using containerization to enable portability
and executability of the implementation of the machine learn-
ing pipeline, as well as pipeline comparison. The AIM ab-
straction, once defined, can be implemented as a Scientific
Filesystem in a container that then will also carry metadata,
parameters and input values, execution instructions, software
versions and libraries, and other information, as well as the
scripts and code that implement the machine learning pipeline
[25]. SCIF is a specification for modular organization of con-
tent, which can be constructed to match the AIM.

We defined a Scientific Filesystem in a container for
the original Golub paper (paper1) in our cancer data ex-
ample, using the AIM defined in Figure 2. In this case
subfolders are created within the container structure that
correspond to the AIM, with one subfolder for each com-
ponent of the AIM. In this Scientific Filesystem example
there are two subfolders, one for the preprocessing and
feature selection component PPFS (called preprocess/) and
one for training the classifier (called classify/). There is a
third subfolder called pipeline for running the ML pipeline
for paper1. We then added a Jupyter Notebook for each
AIM component in each subdirectory. Each component
of the AIM can be run by itself from the container im-
plementation of the Scientific Filesystem. See https:
//github.com/vsoch/AIM-Manuscript/tree/
master/ReproducingMLpipelines/Pipelines/
PipelineExample to access the container as well as a tu-
torial showing how to run the ML pipeline or the components
defined by the AIM.

7. CONCLUSION

The Abstraction for Improving Machine learning (AIM) layer
proposes a way to improve the performance of leaderboard
style ML challenges by structuring submissions to leverage
additional relevant information. The abstraction is customiz-
able for each challenge to support creativity and varied ap-
proaches, but is fixed within a challenge to enables the com-
parability and modularized re-use of components of ML pre-
diction pipelines. We propose combining the AIM with the
same test/train data division for all competition participants
where they only see the training data, as is typical for ML
leaderboard challenges. We show that without modularizing
the computational pipeline into components as done by the
AIM, it is impossible to directly compare the published per-
formance of the classifiers used for the AML/ALL dataset.

Future work could test the prediction improvement of the
AIM in different settings by deploying container images that
are preloaded with the Scientific Filesystem corresponding to
a particular AIM in an ML Prediction Challenge. This could
be done in a controlled way by designing an experiment as
follows. For a dataset, define one Challenge using AIM/SCIF
and one that does not. This could be done in a classroom

Fig. 3. We show a screen shot of the container execut-
ing the Golub pipeline (paper1) in a container using the
Scientific Filesystem with preprocess/ and classify/ sub-
directories corresponding to the AIM defined in Figure
2. The code in each subdirectory can execute a com-
ponent of the AIM independently as well. Available at
https://github.com/vsoch/AIM-Manuscript/
tree/master/ReproducingMLpipelines/Pipe
lineExample.

setting where students are randomly divided into treatment
and control groups. We could see which group obtains the
“winning” pipeline and whether this depends on information
sharing between pipelines.
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